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Abstract. Brain Storm Optimization (BSO) algorithm is a brand-new and
promising swarm intelligence algorithm by mimicking human being’s behavior
of brainstorming. This paper presents an improved BSO, i.e., BSO with learning
strategy (BSOLS). It utilizes a novel learning strategy whereby the first half
individuals with better fitness values maintain their superiority by keeping away
from the worst ones while other individuals with worse fitness values improve
their performances by learning from the excellent ones. The improved algorithm
is tested on 10 classical benchmark functions. Comparative experimental results
illustrate that the proposed algorithm performs significantly better than the
original BSO and standard particle swarm optimization algorithm.
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1 Introduction

Brain Storm Optimization (BSO) is a swarm intelligence algorithm that simulates the
problem-solving process of human brainstorming. The basic framework of BSO was
proposed by Shi [1, 2], who designed the clustering and creating operators by mim-
icking brainstorming process based on Osborn’s four rules in 2011.

As a young and promising algorithm, BSO can be further improved by developing
various searching strategies. In [3–6], a variety of clustering methods were utilized into
BSO instead of k-means clustering to reduce the computational burden of the algo-
rithm. Zhou et al. [7] employed an adaptive step size and generated new individuals in
a batch-mode. Krishnanand et al. [8] presented a hybrid algorithm combining BSO and
Teaching-Learning-Based Optimization algorithm. Sun et al. [9] designed a closed-
loop strategy based BSO (CLBSO) by taking advantage of feedback information and
developed three versions of CLBSO. Cao et al. [10] incorporated differential evolution
strategy into the creating operator of individuals and introduced a new step size control
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method. Cheng et al. [11] removed the clustering strategy and divided the solutions into
elitist and normal classes. Yadav et al. [12] modified BSO with the inclusion of a
mathematical theory called fractional calculus.

In addition, the basic BSO and its variants have been applied successfully to several
kinds of real-world problems. Most applications of BSOs focused on electric power
systems [8], design problems in aeronautics field [9], wireless sensor networks [4] and
optimization problems in finance [13]. However, in evolutionary computation research,
there have always been attempts to further improve any given findings. In this paper,
we present an improved variant of the BSO algorithm named BSO with learning
strategy (BSOLS). In original BSO, new individuals were generated by only one or two
individuals. It may trap into local optima easily. The BSOLS implement a novel
learning strategy imitating human behavior of seeking benefits and avoiding weakness.
The proposed algorithm is tested on 10 benchmark functions, and the results show that
the BSOLS algorithm significantly improves the performance of BSO and the diversity
of population.

The remaining paper is organized as follows. Section 2 will give a brief intro-
duction of the original BSO algorithm. The proposed learning strategy and the
improved algorithm are described in detail in Sect. 3. Simulations on benchmark
functions and experimental results are given in Sect. 4. Finally, the conclusions and
future works are made in Sect. 5.

2 Original Brain Storm Optimization Algorithm

Derived from the human brainstorming process, Shi [1] first proposed BSO algorithm
and gained success. The detailed procedure of BSO can be described as follow:

Step 1: Generate n potential solutions randomly and calculate their fitness values.
Step 2: Cluster n solutions into m classifications using k-means clustering method.
Then select the best solution as a cluster center in each classification. Step 3: Utilize a
newly generated idea in place of a randomly selected cluster center with a small
probability P1 to explore more potential solutions. Step 4: If rand (0, 1) is smaller than
P2, randomly choose one cluster. Otherwise, two randomly chosen clusters are utilized
to obtain Xold. Based on one cluster, a cluster center or a random solution is selected
according to P3. On the basis of choosing two clusters, combine two cluster centers or
two random solutions from selected clusters according to P4. The combination is
defined as

Xold ¼ randðÞ � X1 þð1� randðÞÞ � X2 ð1Þ

Step 5: Update Xold into Xnew according to

Xnew ¼ Xold þ n � Nðl; rÞ: ð2Þ

Where Nðl; rÞ is the Gaussian random value with mean l and variance r. n is an
alterable factor which can be expressed as:
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n ¼ log sigð0:5T � t
k

Þ � randð0; 1Þ: ð3Þ

Where logsig () is a logarithmic sigmoid transfer function, T and t are respectively
the maximum and current iteration number, and k is for changing the slope of logsig ()
function. Step 6: Compare the newly generated idea with the previous one and keep the
better one as the next iteration of the new information.

The assigned values to the set of parameters of BSO are presented in Table 1.

3 Brain Storm Optimization with Learning Strategy

In this paper, we propose a novel learning strategy inspired by the learning capacity of
humans. In general, normal individuals have a willingness to make progress. However,
different individuals have different learning capacity and learning strategy. Some
individuals are so outstanding in special fields that what they need to pay attention to is
avoiding mistakes. Others perform poorly in one area so that it is required for them to
make great efforts for improvement by learning from those individuals who are
excellent. Based on the above strategies, we introduce an improved BSO with learning
strategy called BSOLS.

The original BSO selects only one idea or two combined idea as Xold to generate
Xnew, which may obtain local optima easily. In this paper, we add a learning strategy
after updating operator to enhance the population diversity and to jump out of local
optima.

All the updated individuals Xnew are ranked from the best to the worst according to
their fitness values to differentiate which ones are better. The top Pe % of individuals
will be categorized as “elitists” while the last Pl % will be categorized as “laggards”.
The first half individuals have already been better so their ideas only need to keep far
away from laggards’ ideas. While, the second half individuals have great space to
improve. So they should learn towards elitists. The learning rule is as follow:

X
0
new ¼ Xranked � ðXlast � XrankedÞ � q1 � randðÞ

Xranked þðXtop � XrankedÞ � q2 � randðÞ
�

if i\n=2þ 1 ð4Þ

Where X
0
new s is a new idea after learning operator, Xlast is randomly selected from

last Pl percentage ideas, Xlast is randomly selected from top Pe percentage ideas, q1 and
q2 are similar to c2 in PSO which expresses the influence of other individuals.

According to the parameters investigation in [14], the current replacing operator
makes less or even no contributions to the BSO. To simplify the algorithm, we remove

Table 1. Parameter settings for original BSO

m P1 P2 P3 P4 k l r

5 0.2 0.8 0.4 0.5 20 0 1
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the replacing operator from BSO. The procedure of the proposed BSO with learning
strategy can be described as follows:

(1) The initialization, evaluating, cluster, selecting and updating operator are the same
as the basic BSO. While the replacing operator in Step 3 of original BSO is
omitted.

(2) Sorting. Sort fitness values for each idea Xnew in ascending or descending order (It
depends on the expected fitness value, maximum or minimum) to obtain Xranked.

(3) Learning. If the index of Xranked is no more than half of total individuals, execute
the learning strategy of avoiding weakness. Otherwise, implement the learning
strategy of seeking benefits.

The assigned values to the set of parameters of BSOLS are presented in Table 2.
In BSOLS, the percentage of elitists and laggards are both set to be 0.1. q1 and q2 are
equal to 0.13 and 0.15, respectively.

4 Benchmark Tests and Experimental Results

4.1 Test Problems

To validate the BSOLS, we use 10 benchmark functions, which have often been used
to test population-based algorithms in the literature. All the 10 benchmark functions
and their dynamic ranges are from [15], among which the first five functions are
unimodal functions and the remaining five functions are multimodal functions. All
functions are minimization problems with minimum being zero. Each benchmark
function will be tested with three different dimension setting, i.e., 10, 20 and 30,
respectively. The proposed BSOLS will be compared with the original BSO and the
standard particle swarm optimization (SPSO). To obtain reasonable statistical results,
the tested BSO algorithms for each benchmark function will be run 30 times. All the
experiments are run under the MATLAB R2014a environment on the same machine
with an Intel 2.2 GHz CPU, 4 GB memory. The operating system is Windows 10.

4.2 Parameter Settings

The common parameters for both BSO algorithms are set the same for the purpose of
comparison, that is, the population size n is set to be 100, the maximum number of
iterations is 2000. The parameters for BSO and BSOLS are given in Tables 1 and 2,
respectively. In SPSO, we set c1 = c2 = 2, and inertia weight decrease from 0.9 to 0.5.

Table 2. Parameter settings for BSOLS

m P2 P3 P4 k l r Pe Pl q1 q2
5 0.8 0.4 0.5 20 0 1 0.1 0.1 0.13 0.15
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4.3 Results and Analysis

The mean fitness values, the minimum and the maximum obtained by the three
algorithms are listed in Table 3. The best of all the numerical values obtained on each
function are emphasized by using a bold type. Additionally, the average results
obtained by the three algorithms with 30 dimensions are visually shown for the
example in Fig. 1. The red dotted line, the blue line and the green line are the means of
each iteration for running 30 times of BSOLS, BSO and SPSO, respectively.

According to Table 3, we can draw the following conclusions:
BSOLS performs significantly better than the original BSO on all the tested

benchmarks, which means the learning strategy is effective in terms of the search
accuracy no matter the dimensions and categories of the functions.

Table 3. Experiment results on benchmark functions

Function D BSOLS BSO SPSO

Mean Best Worst Mean Best Worst Mean Best Worst

f1
Sphere

10 2.88E−54 7.47E−77 8.64E−53 3.55E−44 4.88E−45 6.61E−44 2.42E−59 4.01E−66 6.39E−58

20 3.57E−53 2.54E−75 7.47E−52 3.11E−43 1.87E−43 4.06E−43 4.75E−26 1.95E−29 4.99E−25

30 4.18E−53 3.89E−76 1.25E−51 9.58E−43 6.29E−43 1.48E−42 3.10E−14 1.92E−16 3.65E−13

f2
Schwefel’s
P221

10 1.81E−31 1.06E−38 5.29E−30 1.19E−22 7.91E−23 1.59E−22 3.06E−18 6.80E−21 4.48E−17

20 1.43E−31 6.77E−40 4.15E−30 2.75E−04 2.66E−12 3.29E−03 5.77E−03 7.55E−04 1.53E−02

30 2.38E−33 4.39E−40 4.00E−32 6.93E−02 9.77E−03 1.94E−01 2.58E+00 8.51E−01 6.25E+00

f3
Step

10 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0

30 0 0 0 3.33E−02 0 2.00E+00 0 0 0

f4
Schwefel’s
P222

10 4.60E−26 1.75E−37 5.44E−25 4.68E−22 3.48E−22 7.29E−22 1.03E−34 7.81E−37 7.81E−34

20 3.88E−29 3.44E−38 8.97E−28 4.02E−10 1.30E−21 1.19E−08 3.26E−17 1.13E−18 1.84E−16

30 8.63E−26 1.06E−37 1.00E−24 1.63E−02 4.34E−17 2.79E−02 2.50E−10 2.63E−11 7.94E−10

f5
Quartic
Noise

10 4.42E−05 4.42E−06 1.63E−04 4.25E−04 5.92E−05 1.73E−03 1.57E−03 1.99E−04 3.78E−03

20 3.76E−05 6.26E−07 1.26E−04 2.21E−03 3.38E−04 5.08E−03 7.59E−03 2.39E−03 1.32E−02

30 4.58E−05 2.82E−06 2.50E−04 1.13E−02 3.44E−03 2.33E−02 2.00E−02 7.08E−03 4.78E−02

f6
Ackely

10 8.88E−16 8.88E−16 8.88E−16 4.44E−15 4.44E−15 4.44E−15 5.39E−15 4.44E−15 7.99E−15

20 8.88E−16 8.88E−16 8.88E−16 7.16E−15 4.44E−15 1.15E−14 3.89E−14 1.15E−14 1.82E−13

30 8.88E−16 8.88E−16 8.88E−16 1.52E−14 4.44E−15 2.93E−14 5.36E−08 2.86E−09 1.56E−07

f7
Rastrigin

10 0 0 0 4.44E+00 1.99E+00 7.96E+00 1.03E+00 0 3.98E+00

20 0 0 0 1.96E+01 1.19E+01 3.18E+01 1.07E+01 4.03E+00 1.89E+01

30 0 0 0 3.59E+01 2.19E+01 5.67E+01 3.05E+01 1.49E+01 4.97E+01

f8
Rosenbrock

10 0 0 0 6.12E+00 4.16E+00 1.23E+01 2.71E+00 8.34E−03 1.16E+01

20 0 0 0 2.26E+01 1.59E+01 9.18E+01 3.34E+01 1.35E+00 1.11E+02

30 0 0 0 6.15E+01 2.60E+01 1.24E+02 4.38E+01 4.94E+00 1.20E+02

f9
Schwefel’s
P226

10 1.27E−04 1.27E−04 1.27E−04 1.35E+03 4.74E+02 2.47E+03 2.21E+02 1.27E−04 4.74E+02

20 7.90E+01 2.55E−04 2.37E+03 3.32E+03 2.11E+03 4.72E+03 6.75E+02 3.55E+02 1.30E+03

30 3.82E−04 3.82E−04 3.82E−04 5.17E+03 3.57E+03 8.27E+03 1.10E+03 4.74E+02 2.01E+03

f10
Griewank

10 0 0 0 2.04E+00 7.06E−01 4.29E+00 5.90E−02 2.46E−02 9.83E−02

20 0 0 0 1.02E−01 0 1.44E+00 3.92E−02 0 1.20E−01

30 0 0 0 1.18E−02 1.97E−13 6.63E−02 1.28E−02 7.77E−16 8.60E−02
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Fig. 1. Convergence Curves of BSOLS, BSO and SPSO (Color figure online)

516 H. Wang et al.



For f3, f7, f8 and f10, BSOLS can find the optimum zero all the time. It means that
the search stability and superiority of BSOLS in specific optimization problem is best
as compared to BSO and SPSO.

Although the mean fitness values of BSOLS on f1 and f4 with 10 dimensions are
slightly worse than SPSO, BSOLS still performs quite well in terms of the minimum.

We observed visually from Fig. 1 that BSOLS achieves the highest quality of the
solution and the most rapid convergence rate. Altogether, whether in unimodal func-
tions or in multimodal functions, it can be observed that BSOLS outperforms the other
two algorithms.

5 Conclusions

In this paper, we propose a novel learning strategy and combine it with BSO algorithm.
We apply BSOLS, the original BSO and SPSO to a set of benchmark functions to
demonstrate the effect of our proposed algorithm. The results on benchmark functions
show that the learning strategy significantly improves the performance of the original
BSO.

In the future, BSOLS will be compared with more state-of-art algorithms and also
be applied to some real-world problems. Moreover, our future work will focus on the
development of modified BSO with a lighter computational burden to promote its
efficiency.
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