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Abstract—We investigate the feasibility of targeted privacy
attacks using only information available in physical channels
of LTE mobile networks and propose three privacy attacks to
demonstrate this feasibility: mobile-app fingerprinting attack,
history attack, and correlation attack. These attacks can reveal
the geolocation of targeted mobile devices, the victim’s app
usage patterns, and even the relationship between two users
within the same LTE network cell. An attacker also may launch
these attacks stealthily by capturing radio signals transmitted
over the air, using only a passive sniffer as equipment. To
ensure the impact of these attacks on mobile users’ privacy, we
perform evaluations in both laboratory and real-world settings,
demonstrating their practicality and dependability. Furthermore,
we argue that these attacks can target not only 4G/LTE but also
the evolving 5G standards.

Index Terms—LTE, 4G, Fingerprinting, Privacy, Cellular, Ma-
chine Learning

I. INTRODUCTION

Mobile communication signals permeate the airwaves as the

number of devices and users increases while an average user

spends almost 4 hours on their mobile devices every day [1].

Information that we send across these airwaves and the mobile

applications with which we send it discloses intimate details

about our lives, relationship statuses, sexual preferences, po-

litical views, and much more. These revelations can be so

sensitive that even the disclosure of an installed app on a

user’s phone can have significant personal and professional

repercussions [2]. With the unprecedented and continuing

growth of mobile networks, the protection of mobile user

privacy is more pressing than ever.

One approach to protecting mobile user privacy is network

traffic encryption, such as Transport Layer Security (TLS) pro-

tocol. While TLS protects the contents of application traffic,

research has shown that an attacker can reliably identify which
mobile applications are in use by monitoring and fingerprinting

unencrypted metadata in TLS traffic, such as destination

IPs, destination ports, and TLS certificates [3]. Fortunately,

modern mobile communication standards, such as Long-Term

Evolution (LTE), encrypt even this data in the air interface

(the radio layer) [4]. This means that previously-proposed

attacks will only work when the attacker can access either the
victim’s mobile device or the base station the victim’s device

is connected to, where the attacker can sniff and analyze the

transport layer traffic that is not protected by LTE encryption.

In this case, compromising cell phones or breaking into base

stations can be challenging in the real world. However, is this

really necessary?

In this paper, we demonstrate that the physical channel

of LTE alone is sufficient to carry out previously-proposed

privacy attacks to identify which mobile applications are in

use on a device. Because our attacks function on the physical

layer of LTE, they can be carried out through self-deployed

sniffers directly on the exact traffic transmitted in the air, and

do not require physical or logical access to user equipment
or network nodes. They also do not require the cooperation

of mobile vendors. Worse, these techniques scale with the

number (and coverage) of deployed sniffers, and by correlating

the use of messaging applications between different devices,

we could detect communication between targeted users. The

capabilities that we describe in this paper allow an adversary

with moderate resources, such as a nation-state or a local

police department, to identify the pre-trained apps used by

and detect communication links between targeted users, on
a city-wide scale and with a reasonable success rate, using

undetectable techniques.

To function on the physical layer of LTE, our attack cannot

depend on techniques used by previous work, such as the

analysis of IP addresses, ports, domain names, or TLS certifi-

cates. Instead, our mobile application fingerprinting framework

uses physical-level information (e.g., transport block sizes) in

wireless traffic to fingerprint mobile applications used by a

victim. Using a labeled dataset collected by our framework,

we trained a machine learning model to classify traffic and

predict mobile applications that are in use. To ensure the

practical feasibility of the proposed attacks in the real world,

we assess the variables that affect the performance of the

attacks, including changes in performance over time, the

261

2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/23/$31.00 ©2023 IEEE
DOI 10.1109/DSN58367.2023.00035



impact of multiple apps, and LTE handover. Based on this

capability, we propose three privacy attacks against targeted

mobile users: A mobile-app fingerprinting attack, a history

attack that reveals the history of a user’s mobile application

usage, and a correlation attack that reveals the relationship

between any two mobile users.

We evaluated our attack in both laboratory and real-world

settings. Our dataset consists of a total of 350,521 traffic traces

recorded over six months, including 220,278 traces recorded in

a lab setting and 130,243 live network traces in a real-world

setting across three major US mobile networks. In the real

world, our mobile-app fingerprinting attack achieved F-Scores

of 74% to 91%; Our history attack achieved an 83% success

rate, and our correlation attack showed varied but promising

results, reaching up to 100% precision rates for certain classes

of communication. Finally, we estimate the attack costs that

an attacker needs to exert for continuous monitoring and

deduce that the attacker can perform the same level of app

fingerprinting and privacy attacks as a large organization.

Our attacks provide new insights into the vulnerability of

LTE standards to side-channel attacks and potential directions

for the security of LTE traffic. Because the evolving 5G

standard suffers from similar weaknesses, we as a community

must move quickly to address such weaknesses early. Our

paper makes the following contributions:

• Physical-layer mobile application fingerprinting. We

propose a mobile-app fingerprinting attack using only
data available in LTE physical channels. This attack can

be carried out by self-deployed sniffers, at scale, and

cannot be detected by victims.

• Two novel privacy attacks in LTE networks. Atop

the classification model, we propose two novel targeted

privacy attacks (history attack and correlation attack),

which allow attackers to reveal the specific mobile users’

app usage patterns, locations, and even the relationship

between users.

• Real-world evaluation. We evaluate our proposed attacks

in both laboratory and real-world settings. Our attacks

show high accuracy and reliability in both environments.

In the spirit of open science, we publicly release our lab-

created dataset, the trained model, and the source code of our

attack framework upon publication.1

II. BACKGROUND

A. Overview of LTE Networks

As shown Figure 1, LTE networks are comprised of three

main components: user equipment (UE), evolved Node B

(eNB), and evolved packet core (EPC). The UE provides end-

users with access to cellular services. An eNB is a base station

that provides a radio connection to the UEs. An EPC is a

network that manages user registration and mobility. Multiple

identifiers are broadcast to UEs to ensure proper data delivery

via the unencrypted physical channel exposed to the public.

1https://github.com/sefcom/LTE-fingerprint

Fig. 1: LTE Architecture and RRC Connection Procedure.

A Radio Network Temporary Identifier (RNTI) is assigned to

the UE by the eNB (�) using the DCI (Downlink Control

Information) message, and a Temporary Mobile Subscriber

Identity (TMSI) is assigned by the EPC (�). By assigning

RNTIs to connected UEs, the eNB differentiates the user

from other connected users. Similarly, TMSIs are unique

identifiers assigned by the EPC when UEs are registered in

LTE networks; they are limited to the context of the serving

eNB. When UEs move to new cells, the TMSIs will no longer

be valid. An eNB communicates scheduling information to

its connected UEs through DCI messages that are carried

within a Physical Downlink Control Channel (PDCCH) which

is an unencrypted channel. While the actual traffic is sent

over dedicated channels in encrypted forms, e.g., the Physical

Uplink Shared Channel (PUSCH) and the Physical Downlink

Shared Channel (PDSCH), PDCCH transmits DCI messages

in plain text, which makes these messages trivially decodable.

To collect specific users’ traffic only, it is essentially nec-

essary to know the RNTIs of the UE. The RNTI may change

randomly, however, based on network policies or UE activity.

For instance, to save power and network resources, a UE enters

“idle mode” if no data is transmitted between the UE and its

eNB for a threshold of time (default 10s). When eNB sends a

paging call to the idling UE, the UE will switch to “connection
mode”, reconnect to the eNB, and receive a new (usually,

different) RNTI from eNB. Thus, the validity of an RNTI

depends in part on the application-layer protocol of mobile

apps [12]. The longer a mobile app transmits data and keeps

the UE in connection mode, the longer its RNTI will stay

valid.

B. Known Privacy Attacks in Mobile Networks

Mainly privacy attacks in mobile networks have been cov-

ered in terms of identity mapping, location leaking, and Web

fingerprinting using side-channel information on man-in-the-

middle or locally-intercepted traffic.

UE Identity Mapping. International Mobile Subscriber Iden-

tity (IMSI) is the permanent unique number of mobile sub-

scribers. IMSI catching is a well-known attack aiming to reveal

the number stored inside UE [13], [14]. This process can be

done passively and actively, but the passive opportunity to

do so is barely rare. In most cases, it relies on an active

attacker, such as a fake base station [15] or an overshadowing

attack [16] that requires sending messages to the victims

and IMSI Extractor [17] using the undetectable low-power

message overshadowing with sniffers. Also, TMSIs and RN-

TIs can be leaked by decoding the sniffed traffic over the
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TABLE I: Comparison of network fingerprint attacks (©: supported, X: unsupported, �: partially).

Capabilities Wired
[5], [6]

Wi-Fi
[7], [8]

LTE
[9]–[11]

Ours
(LTE)

Our Approach

Physical layer fingerprints X © � © Decoding Physical Channel (section IV)
Multiple categories classification © © X © 3 Classes: Streaming, Mobile VoIP, IM apps classification (section VI)
Targeted privacy attacks X � X © History attack(section VII-B), Correlation Attack (section VII-C)
Real-world evaluation © © � © U.S. major Mobile Network Operators (MNOs) (section VII-A)

air. Both are temporary identification numbers and normally

TMSI is much longer-lived than RNTI. The feasibility of

the mapping between permanent and temporary IDs allows

an adversary to reveal the subscriber’s identity, which is

called an identity mapping attack. The first identity mapping

attack was proposed by matching passively RNTI and TMSI

in Random Access Channel (RACH) procedure [11]. The

attacker learns the identity of a user by eavesdropping on the

connection establishment procedure, which is not detectable

and completely passive, and which is a building block of our

approach. In a different attack, Kohls et al. [10] proposed

actively injecting watermarks in the traffic to identify the traffic

of the specific user. Typically, an identity mapping attack

serves as a stepping stone for the targeted attack [18] which

allows the adversary to identify and track the specific user

within a cell for gathering the critical data (or traffic) in a

stealthy manner.

Location leaks. Due to the prevalence of the cellular network,

the geographic location tracking of the mobile subscriber

is a common research interest, as intercepting the victim’s

paging channel and calling or texting the victim to invoke

paging messages. The radio signal also leaks the tracking

area code, received power threshold to trigger a handoff to

an adjacent cell, and a series of configuration parameters that

could be leveraged to configure a rogue base station [19], [20].

Additionally, the timing advance parameter in the signaling

plane is also used for location-based attacks [21].

Traffic Fingerprints Research on traffic fingerprinting and

classification has been extensive, ranging from the first attacks

on Secure Socket Layer (SSL) traffic in 1998 by Cheng et

al [22] to the latest deep learning attacks on website traffic [3],

[6], [23]–[25]. Table I shows comparisons of prior network

fingerprint attacks performed on the wired, Wi-Fi, and LTE

networks. The patterns of our collected traffic are highly

similar to the transmission and encryption characteristics of

HTTP and TCP/IP protocols.

While a dataset of encrypted website fingerprints is avail-

able [3], [23], [24], there is little LTE traffic dataset collected

at the physical channel for fingerprinting. Therefore, we cre-

ate these datasets by collecting LTE traffic via the physical

channels in a lab setting and real-world setting.

C. Targeted Attacks

A targeted attack is a type of dedicated attack that aims

at a specific user or group to gain access to critical data in

a stealthy manner [18]. Our attack is aligned with the char-

acteristic of targeted attacks, which is intended for pursuing

specific victims the attacker is interested in and obtaining

critical data in a hidden manner. Also, the attackers may wait

for the appropriate opportunity to execute the devised attack.

D. Related work

Bae et al. [9] performed a video identification attack to

identify mobile users who are watching specific videos and

predict the video title that each of these users watches by

leveraging fingerprinting the labeled datasets in LTE networks.

Their attacks achieved a high accuracy against video stream-

ing. However, the performance and scalability of the attack

could be limited to the detection with the known video stream

traces. Kohls et al. [10] investigated a passive fingerprinting

attack and an active identity-mapping attack on encrypted

LTE/4G layer-two traffic in the private lab and commercial

network. They inject specific letter patterns into the mobile app

to generate a specific signal pattern, which makes it impractical

in the real world due to the detection of the user which

leads to the blocking of the apps. Subsequently, Rupprecht

et al. [11] presented an LTE layer two security analysis

and introduce a passive identity mapping attack and website

fingerprinting attacks. However, they limited the scope of the

capability to fingerprint the website within experimental data

and provided proof-of-concept. Thus, a commercial network

test for practicality is limited. As summarized in Table I,

our approach is not the first attempt at fingerprinting the

LTE traffic, nor the first to propose privacy attacks. However,

compared with previous work, we extend its targeted privacy

attacks to derive the user’s history of activity and relationship

with other callers in a passive manner. Also, we focus on

the practicality of the attacks with various vectors based on

real-life scenarios such as asynchronous sessions, background

traffic noise, handovers, and the attack cost.

III. OVERVIEW

A. Threat Model

To determine the targeted victim, we assume that an attacker

may profile the victims based on Open Source Intelligence

(OSINT), such as social network accounts or websites provid-

ing individual information. Also, the attacker may stay in the

victim’s physical cell and access the cell coverage.

We assume that the attacker’s sniffer is pre-installed within

the target range of an LTE cell/eNB (or several sniffers within

the range of several LTE cells) that victims are connected to.

The sniffer also supports the LTE radio cell scanning feature to

search the specific frequency (channel) and MNO information

used for targeting the victim. All other attacker’s capabilities

derive from this requirement. By fulfilling the requirement, the

attacker can collect wireless messages from a sole downlink or
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Fig. 2: Examples of history attack and correlation attack.

uplink channel with one sniffer. If an attacker wants to collect

wireless messages from multiple N channels, N sniffers are

required.

In this way, the attacker collects and analyzes “traces” (that

is, physical channel metadata) of a victim’s LTE communi-

cations to identify apps on the victim’s mobile device and

perform the aforementioned privacy-infringing attacks. The

attacker can transfer the collected traces for offline analysis,

whether to a cloud or private computing center for a pre-

trained model to analyze the data. In addition, the attacker

can launch attacks in a stealthy manner remotely, using their

own multiple devices and their own infrastructure. These

requirements are easy to be satisfied for common people at

an affordable cost (500 to 1,000 USD per Software Defined

Radio (SDR)-based sniffer), plus computing power).

B. Attack I. Mobile Apps Fingerprinting Attack

Our mobile app fingerprinting attack is the foundation of

the next two privacy-infringing attacks. It first begins with data

collection: recording the victim’s RTNI, IMSI, and radio traffic

between the victim’s UE and the eNB. The attacker can then

use a pre-trained classifier to identify application fingerprints

in the data, matching individual users to the applications

used. Over the entire process, the attacker does not need

to break any encryption or actively compromise any devices

or infrastructure (such as the victim’s cellphone or any base

stations). All that is required is a passive sniffer, which allows

the attack to be extremely stealthy, and off-the-shelf physical

channel LTE parsing routines.

C. Attack II. History Attack

The mobile app fingerprinting attack allows an attacker to

deduce which apps a user (victim) is running at any specific

time. By analyzing all LTE traffic of a victim over a certain

period of time, we can recognize the app usage patterns of this

victim. Since prior work allows us to associate the victim’s

UE and all random RNTIs that eNBs assign to it [26], [27],

we will then be able to reveal the victim’s movement history

together with their app usage patterns.

Figure 2 exemplifies a history attack on User A, who is

staying within or moving between (roaming or handing over)

cell zones of the same mobile operator. User A frequently

moves between Cell Zone A’ (their home), Cell Zone B’

(their workplace), and Cell Zone C’ (a grocery store). An

attacker has pre-installed traffic sniffing devices in these cell

zones and can continuously trace RNTIs of the victim’s UE

across zones (i.e., handover between cells) using an IMSI

catcher [13], or perform identity mapping attack [11] described

in Section III-E. By launching the history attack, the attacker

will reveal the victim’s movement history and their app usage

in each location cooperatively.

D. Attack III. Correlation Attack

Since capturing messages in the LTE physical channel is

easy and affordable cost, we extend our attack to multiple

victims and propose a correlation attack: Based on appli-

cation usage patterns that two UEs have at the same time,

an attacker may infer the relationship between the victims

without having any prior knowledge of the victims or their

app usage patterns. When two users communicate with each

other using the same app, their LTE traffic patterns could be

similar. If traffic patterns of two UEs correlate, we can learn

that their users may be related in some way. For example,

User A and User B in Figure 2 chat with each other on a

messaging platform. An attacker could infer their relationship

(based on communication) and level of intimacy (based on the

application used to communicate) by launching a correlation

attack.

We leverage correlation analysis to predict the interrelation-

ships between users’ traffic patterns. Correlation analysis is a

statistical method for measuring the strength of a relationship.

We collect network traffic of mobile apps for each pair of

User A and B and generate graphs with respect to the number

of frames. With the help of pre-trained app fingerprints, we

can identify apps in use and the exact type of application

(e.g., VoIP calls, video streaming, etc.), and then extract traffic

patterns from the traffic. By calculating the similarity between

traffic patterns, we discover the degrees (similarity scores) of

the relationship between two victims.

E. Overview of the Attack Framework

Figure 3 illustrates the high-level procedures of the proof-of-

concept framework that we built for the proposed attacks. Our

framework enables an over-the-air, automated, and detailed

traffic profiling in LTE physical channels, and implements

LTE physical-channel-based mobile app fingerprinting attack

as four procedures: identity mapping, data acquisition, data

pre-processing, training, and classification.

� Target Identity Mapping. First, a target identity mapping

is to match RNTI to TMSI or IMSI, enabling us to identify

users within a cell and serving as an important prerequisite step

for performing the extended privacy attacks in terms of col-

lecting the traffic of specific apps of the user continuously. We

leverage the prior passive method [11] to map the RNTI to the

TMSI by exploiting the contention-based resolution identity of

the RRC connection setup message as shown in Figure 1. To

this end, we first collect and maintain a list of active RNTIs

using open-source software OWL [28] which identifies UEs
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Fig. 3: Overview of the proof-of-concept framework for fingerprinting mobile apps using LTE physical channel messages

within a given cell. Although the RNTIs are refreshed by the

eNB, we can detect its changes and correctly associate the

UEs by decoding the corresponding DCI (Downlink Control

Information) records with CRC bit masking over time using

this method. Alternatively, to map TMSI to the persistent

identifier (IMSI), we could also consider the existing active

methods [13], [29], [30] mentioned in Section II-B, which

inject watermarks in the traffic or perform man-in-the-middle

attacks. Once we adopt and employ them, our attacks are not

entirely performed with a passive sniffer in this step anymore.

If we would insist on the passive mode in the attack, our attack

supports only mapping to a TMSI passively.

� Data acquisition. Next, the framework sniffs LTE data off

the airwaves to decode DCI messages to obtain the raw data

that will be used in the attack.

� Data preprocessing. Next, the framework generates traces

based on decoded RNTIs and sorts traces by the user, as

determined by the RNTI and IMSI. These traces are used in

two ways according to their purpose.

� Training and classification. With a dataset of traces and

ground truth for the applications used over time in the dataset,

the framework trains a classifier. Given a trained classifier, the

framework queries the classifier to determine what applications

are responsible for the observed traces. We first identify the

class of the application and then identify individual apps

subsequently.

In this way, we use the trained classifier in order to finger-

print mobile apps by analyzing the DCI messages collected

from a sniffer. In addition to the capability of fingerprinting

mobile apps in the framework, we implemented history and

correlation attacks. We will present the details of the frame-

work in the following sections.

IV. DATA ACQUISITION AND PILOT STUDY

The very first step of the fingerprinting attack is collecting

data that will later be used in the machine learning component.

Our attacking framework uses side-channel leaks in DCI mes-

sages (Section II-A), such as sizes of the payload and intervals

between consecutive messages, as features for classification.

In the rest of this section, we will detail how the framework

collects and decodes DCI messages, as well as which mobile

apps to include in our study.

A. Selecting Mobile Apps
We select nine popular mobile apps from three categories

that are representative of common mobile activities: streaming,

messaging, and VoIP. Since video streaming is a common

target of traffic differentiation [31], VoIP and IM are social

connection inferable apps. For streaming, we picked Netflix,

YouTube, and Amazon Video; For messaging, we picked Face-

book Messenger, WhatsApp, and Telegram; And Facebook

Call, WhatsApp, and Skype were selected for VoIP. At the time

of writing, these apps topped the charts in their corresponding

categories on Google Play Store. Note that our attack is not

specific to Android apps, since these apps all have counterparts

on other mobile platforms, such as iOS.

B. Gaining Insights from Observations
Any data-driven methods require a comprehensive under-

standing of data characteristics and recognition of key patterns

derived from these characteristics. To this end, for our selected

mobile apps, we conduct controlled experiments to collect

the traffic over LTE physical channels in a lab setting where

variables can be manipulated and monitored. For each app,

we manually created Application-Layer sessions using the

following approach:

• Streaming apps. We pick several different videos and play

each video for 10 minutes.

• Messaging apps. We send and receive text messages, files,

voices, and emoticons for 10 minutes. These actions are

automatically performed by Auto Clicker [32].

• VoIP apps. We play a piece of music or a speech for 10

minutes.

Streaming apps. These mobile apps generally use exist-

ing Application Layer protocols, such as Real-Time Stream-

ing Protocol (RTSP), Dynamic Adaptive Streaming HTTP

(DASH), and Real-Time Messaging Protocol (RTMP) [33].

As a result, they segment their content at the Application

Layer. We could spot traffic patterns and the impact of these

protocols. For example, in the case of Netflix, frame sizes

distribute almost uniformly between 0 and 4000 bytes, and

the intervals between traffic bursts are relatively long. In the

cases of Amazon Prime Video and YouTube, we observe a

more continuous frame transmission pattern with much shorter

intervals between bursts (if there are any). Compared with

traffic patterns of other mobile apps, video streaming apps

seem to use much more radio resources at the beginning of

each session (intuitively, due to video buffering).
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Messaging apps. Intuitively, the traffic patterns of instant

messaging (IM) apps are of a dynamic nature, since users

at both ends of a chat have full control over what messages

and media files to send when to send them, etc. We could

observe that IM apps tend to close a session (in the Application

Layer) if neither end of a chat sends anything for some time

(usually a few or tens of seconds) to save resources. When

the Application-Layer session is closed, the old RNTI may

timeout; Once the chat is resumed and a new Application-

Layer session is re-established, a new RNTI is assigned in the

Physical Layer of LTE. As a result, the use of IM apps usually

involves a more frequent changing of RNTIs 2.

VoIP apps. This class of apps usually involves a continuous

transmission and a more constant usage of radio resources

throughout their sessions. Further, VoIP apps are the only class

of mobile apps with a significant and similar amount of data

transmitted in both directions (uplink and downlink). Since

mobile VoIP calls are usually bidirectional communication,

this observation is reasonable.

C. Configuring Devices for Collecting Data

Realizing that different categories of mobile apps have

vastly different traffic patterns (at least in a lab setting),

we continued to pursue our research by performing data

collection in more realistic settings. In the lab setting, we

used a commercial off-the-shelf (COTS) radio device (USRP

B210 [34]) and a programmable SIM card [35]. We utilized 5

different UEs to collect the traffic: Google Pixel 3XL (Android

Pie), Samsung Galaxy Note 8 (Android Pie) and 10+ (Android

10), Motorola E5 (Android Pie), and iPhone11 pro (iOS13).

For the real-world setting, we used a pre-paid SIM card for

each of the major US mobile carriers: Verizon, AT&T, and

T-Mobile. We use a server (Intel Core i7-4760 3.6GHz with

32 GB RAM) with Ubuntu Server 18.04 LTS. Once the UE

established a connection with an eNB, we followed the same

traffic-generation strategy as described in Section IV-B to

generate and collect traffic.

V. DATA PREPROCESSING

To generate fingerprints and train the model, we must select

features from the network traffic. We extracted features from

the collected data frames by leveraging the subset tool of

open source srsLTE, pdsch ue [36]. From the perspective of

distinction in traffic, we expect the traffic to show different

sizes and intervals of the frames depending on the behavior of

the apps and their communication with back-end servers. For

instance, streaming apps such as Netflix maintain the session

for a certain period of time with buffering time on both the

server- and client-side. However, IM apps have very different

sizes and intervals from streaming services. To account for the

fact that apps show a different behavior, we focus on the size

and time variables of the decoded DCI messages.

2We used input automation software to create continuous chat sessions to
collect data for avoiding RNTI refreshes. It could not be realistic but for
detection purposes, we adopt this mimicking method

TABLE II: Selected features for the classifier

Type Features

Time vector Interarrival time, Cumulative time

Size vector Frame size (block size)

Direction vector Uplink, Downlink

Identity vector RNTI

Accordingly, we select the features from decoded traffics as

shown in Table II. Interarrival time refers to the time difference

between the arrival of the frame and then the arrival of the next

frame. Cumulative time refers to the sum of interarrival time.

Frame size is the size (in bytes) of one frame which is defined

as Transport Block Size (TBS) in decoded LTE PDCCH, and

it is the same size as the payload in the data link layer.

The uplink and downlink features are used for identifying

the relations between two callers. Suppose the sender sent

a specific amount of data at a certain time and the receiver

received an equal amount at that time, then we can assume

they communicated at that time.

To train our classifier, we create a labeled dataset (trace

group) by running selected apps on UEs, detecting the RNTI

within the PDCCH DCI data traces, and associating the

corresponding DCI trace with a label that identifies the app.

We made this labeling possible by identifying RNTIs from

the traffic that we generated by the UE so that it could be

identified among all other users. This trace grouping process

is also applied to the classification attack phase except for

labeling.

VI. TRAINING AND CLASSIFICATION

Three major classes of apps show different patterns based on

the frame size and its frame time. The identification of apps

from traffic is a classification problem where the adversary

gathers labeled traffic traces of candidate apps for a training set

to later test against unlabeled network traffic traces. The buffer

size for rendering, the feature of the video codec, and radio

configurations could impact these patterns [12]. To adapt to

this dynamic nature, we must use machine learning algorithms

to build a classifier.

To build a classifier from the recorded datasets, we used

Random Forests (RF) [37] and the Weka open-source machine

learning software [38]. RF handles multi-dimensional data in

complex and nonlinear relationships between features and is

relatively fast to train to be easily scaled to handle large

datasets. For additional details, we provide a benchmark for

learning classifiers in Section VIII-D to explain why we prefer

the RF over other algorithms. To assure the practicality of our

framework in real-world settings, we consider asynchronous

sessions, where the machine learning algorithm has no knowl-

edge about where the sessions in the trace begin and end.

Each session is split using a time window size (msec) and

moved to the next frames from the beginning of the session

with a certain time frame. We set the time window as 100

ms empirically and aggregate the frames in each window.
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Fig. 4: Experimental setup for lab and real-world settings.

We tested for deriving the optimal window size which helps

us to decide the value of the parameter in the performance

of the model. Through this splitting procedure using sliding

windows, we obtain the synchronization points where each

session presents patterns similar to the classifier. Retraining
the classifier. Traffic patterns of a mobile app may change

over time and deviate from the original pattern as collected for

training. As such, we may train and update the classification

model in an adaptive manner if the trace is unclassified or

incorrectly classified for the same activity. Likewise, if the

trace is detected with a low F-Score due to the introduction of a

new carrier, a new eNB, or a new mobile app, the trace will be

transferred to the Training and Learning phase to adopt it. We

discuss this retraining issue as updating cost in Section VII-D.

VII. EVALUATION

Ethical consideration. We used the Faraday cage [39] to

block the radio signal between our experimental lab setting

and the commercial LTE networks. Thus, our experiments did

not cause any disruption to the live LTE networks or mobile

devices other than the ones used for our evaluation, as wireless

signals were blocked from reaching unsuspecting UEs of real-

world users. The real-world experiments required our UEs to

communicate with the base stations of the commercial mobile

providers, but this communication was done using standard,

unmodified UEs and followed normal LTE protocols. We ran

no base station in the real-world experiment, only a passive

sniffer to capture the traffic between UEs and the providers’

base stations. Additionally, our Institutional Review Board

(IRB), which oversees research integrity and ethics, requested

that we only stored data from our own UEs, and discard data

from other UEs. We accomplished this by filtering for the

RNTIs used by our UEs. While this reduces the types of

measurements we can make from the dataset, it ensures that

the private data of users uninvolved in (and fundamentally

unable to consent to) the experiment is protected.

Lab vs. Real-world settings. We evaluate our attacks in

two different environments: the lab setting and the real-world

setting. The former setting used our own self-configured LTE

base station (eNodeB), and our own UEs. As a result, we have

a high level of control over this experiment, which is useful for

verifying the proper functionality of our implementation and

the efficacy of our approach. Additionally, since this dataset

contains no data of real users (even in encrypted form), we

can release this dataset to aid the work of future researchers.

In comparison, the real-world setting is based on traffic

captured from live commercial mobile networks of three

major US mobile carriers: Verizon, AT&T, and T-Mobile. We

registered our own commercial UEs on these networks and

measured our system’s ability to perform the described attacks

on these UEs. Figure 4 illustrates the components for both the

tests in the lab setting and the real-world settings.

Data collection. In order to capture and decode the LTE

handshake (PDCCH), we customized the pdsch ue module

of the open-source LTE software tool srsLTE [36]. Then,

we extract frame metadata, including timestamp and total

block size in bytes, from the decoded traffic. This is purely a

decoding (not decryption) task, using standard LTE protocol

decoding tools. The two extracted values are then used to

generate the time series as described in Section V. This data

collection procedure is repeated 10 times for a total of over

3,000,000 instances for Streaming, Messaging, and VoIP apps.

The selected mobile apps are listed in Section IV-A

Building the training dataset. To build a labeled training

dataset in the lab and the real-world setting, we generated

mobile-app traffic using our UEs and repeatedly captured

traffic. For each app, we used up to 350,000 samples in both

the lab and real-world settings, capturing the traffic of each

app for the duration of 10 minutes per trace. Network traces

for each of the interactions were collected separately for 6

months per group.

Traffic patterns and frame metadata are sensitive to operator-

specific configuration, such as the specific resource scheduling

algorithms that eNodeBs use, which affect the radio resource

allocation. Therefore, we build datasets and train our frame-

work for each mobile network operator in a real-world setting.

Data drift in LTE traffic. We see that the properties

of network traces change over time and that different

geographically-located base stations have their own settings

such as microcells and macrocells. Therefore, it is necessary

to update the data set periodically to maintain successful attack

performance. We discuss the implications of this on real-world

uses of these attacks in Section VII-D and VIII.

A. Mobile-app Fingerprinting Attack

1) The Laboratory Setting: Table III shows the classifica-

tion result in the lab setting. The F-Score shows 98% to 99%

accuracy for Streaming apps, 93% to 95% for Messaging apps,

and 97% to 99% for VoIP apps. This means our classifier

can reliably recognize mobile apps only based on data readily

available in LTE physical channels. Consequently, we will

proceed with our fingerprint attack on a commercial network

setup, which will illustrate how fingerprinting attacks can be

executed in a real-world scenario.

2) The Real-world Setting: The commercial mobile net-

work exhibits a dynamic and evolving nature [40], which

may significantly affect the features that our classifier relies

on. We discuss the various type of real-world factors (time,
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TABLE III: Mobile app classification results in the laboratory setting with Random Forest. The results of a classification in the

controlled environment show that we can fingerprint the application running on the target mobile device with high accuracy

by capturing wireless signals.

Category Mobile Apps Down+UP Down (1) UP (0)
F-Score Precision Recall F-Score Precision Recall F-Score Precision Recall

Streaming
Netflix 0.991 0.991 0.996 0.991 0.991 0.991 0.989 0.990 0.988

YouTube 0.996 0.995 0.996 0.996 0.995 0.996 0.995 0.994 0.995
Amazon Prime 0.988 0.988 0.988 0.988 0.988 0.988 0.987 0.986 0.987

Messenger
Facebook 0.949 0.966 0.932 0.950 0.968 0.933 0.873 0.929 0.824
WhatsApp 0.952 0.945 0.959 0.934 0.923 0.944 0.941 0.930 0.954
Telegram 0.931 0.929 0.933 0.917 0.907 0.917 0.903 0.901 0.906

VoIP call
Facebook 0.975 0.971 0.979 0.973 0.974 0.972 0.973 0.972 0.975
WhatsApp 0.986 0.988 0.983 0.984 0.985 0.984 0.985 0.986 0.983

Skype 0.996 0.996 0.996 0.995 0.995 0.996 0.996 0.996 0.996

TABLE IV: Mobile app classification results in a real-world setting (Downlink Only) with Random Forests. In real mobile

networks, precision, recall, and F-score values decrease by 5 - 30%. Nevertheless, we can still identify the apps with sufficient

confidence.

Verizon AT&T T-MobileCategory Mobile Apps F-Score Precision Recall F-Score Precision Recall F-Score Precision Recall

Netflix 0.818 0.821 0.815 0.811 0.821 0.801 0.811 0.809 0.814
YouTube 0.789 0.799 0.798 0.793 0.789 0.798 0.798 0.801 0.795Streaming

Amazon Prime 0.854 0.852 0.856 0.858 0.862 0.854 0.858 0.869 0.847

Facebook 0.841 0.841 0.842 0.840 0.853 0.827 0.829 0.833 0.826
WhatsApp 0.791 0.794 0.789 0.790 0.792 0.789 0.789 0.794 0.784Messenger
Telegram 0.748 0.751 0.746 0.748 0.749 0.747 0.747 0.749 0.746

Facebook 0.901 0.900 0.902 0.839 0.891 0.895 0.911 0.912 0.911
WhatsApp 0.794 0.799 0.789 0.791 0.789 0.794 0.779 0.780 0.778VoIP call

Skype 0.866 0.877 0.855 0.863 0.871 0.855 0.854 0.851 0.858

TABLE V: History attack results showing the duration of traffic capture, F-score, and correctness of the classification. From

the empirical observation, the prediction results become unstable if the F-score falls below 70%.

Location Date Start Time End Time Duration Categories F-score Prediction Result

Zone A’ 05/08/2022 15:00:08 15:06:07 0:05:59 Streaming apps 85.35% Netflix TRUE
Zone B’ 05/08/2022 15:30:10 15:35:25 0:05:15 Messaging apps 67.32% Telegram FALSE
Zone C’ 05/08/2022 17:10:08 17:18:05 0:07:57 VoIP apps 85.35% Netflix TRUE
Zone A’ 05/08/2022 17:25:55 17:35:52 0:09:57 Streaming apps 85.54% YouTube TRUE
Zone B’ 05/08/2022 18:12:25 18:18:06 0:05:41 Messaging apps 78.12% Facebook TRUE

Zone A’ 05/09/2022 11:10:52 11:16:51 0:05:59 VoIP apps 72.12% WhatsApp TRUE
Zone B’ 05/09/2022 12:00:08 12:06:07 0:05:59 Messaging apps 78.12% Netflix TRUE
Zone C’ 05/09/2022 12:35:25 12:41:17 0:05:52 Streaming apps 69.65% Amazon FALSE

Zone A’ 05/10/2022 17:12:16 17:22:00 0:09:44 Streaming apps 88.12% YouTube TRUE
Zone B’ 05/10/2022 17:32:16 17:39:26 0:07:10 VoIP apps 66.45% Skype TRUE
Zone A’ 05/10/2022 18:15:00 18:21:11 0:06:11 Messaging apps 90.52% Facebook TRUE
Zone A’ 05/10/2022 18:25:00 18:31:26 0:06:26 Streaming apps 89.41% Netflix TRUE

multiple apps, handover, and location) which can affect the

accuracy of the classifier in Section VIII. Table IV shows

experimental results, where the F-Scores for all classes of

mobile apps: 79% to 86% for Streaming apps, 74% to 84% for

Messaging apps, and 77% to 91% for VoIP apps. As expected,

the classification performance is lower than in lab settings,

and we observe noticeable drops in F-Scores (around 5 to 10

percentage points). However, even with this efficacy reduction,

application fingerprinting remains relatively robust.

B. History Attack

To evaluate the history attack, we set up a radio monitoring

environment (Figure 2) on the T-Mobile network (Figure 5

depicted by Cellmapper [41] which is a crowd-sourced cellular

tower and coverage mapping service). Each data collection

device (sniffer) records and decodes traffic within each cell

zone (attack zone). In the experiment, the UE roamed (han-

dover) between cells, and the victim used different apps

for at least 10 minutes within each cell zone. As discussed

earlier, we tracked only the UEs directly associated with our

experiment. Afterward, we integrated all collected traffic into

one dataset, which was then used for mobile-app fingerprinting

and location tracking of UEs.

Table V shows experimental results. We attempted a history

attack 12 times in total over 3 days and successfully detected
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TABLE VI: Similarity scores (D(Tw, Ta)) of the captured traffic traces. The mean values show how close the traffic pairs are

similar.

Messaging VoIP

Facebook WhatsApp Telegram Facebook Call WhatsApp Call Skype

Mean STD-DEV Mean STD-DEV Mean STD-DEV Mean STD-DEV Mean STD-DEV Mean STD-DEV

Lab 0.850 0.131 0.862 0.129 0.750 0.125 0.896 0.085 0.886 0.085 0.930 0.128

AT&T 0.754 0.088 0.772 0.089 0.654 0.091 0.724 0.066 0.754 0.064 0.643 0.080

T-Mobile 0.716 0.082 0.736 0.086 0.688 0.063 0.696 0.059 0.741 0.096 0.676 0.091

Verizon 0.692 0.100 0.652 0.077 0.634 0.095 0.672 0.057 0.782 0.099 0.610 0.052

Average 0.721 0.085 0.730 0.078 0.653 0.082 0.697 0.075 0.759 0.088 0.642 0.083

TABLE VII: Precision and recall values for the similarity classification in correlation attacks. The values are the results of

classification through logistic regression. VoIP apps are easier to identify contact between users.

Messaging VoIP

Facebook WhatsApp Telegram Facebook Call WhatsApp Call Skype

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Lab 0.891 0.833 0.865 0.834 0.975 0.961 1.000 0.980 0.993 0.937 1.000 0.994

AT&T 0.726 0.697 0.659 0.637 0.734 0.694 0.698 0.689 0.736 0.725 0.792 0.766

T-Mobile 0.728 0.727 0.773 0.761 0.773 0.767 0.774 0.750 0.869 0.846 0.736 0.738

Verizon 0.814 0.825 0.727 0.699 0.788 0.792 0.756 0.767 0.774 0.767 0.716 0.719

Fig. 5: History attack setup on T-Mobile Network.

Fig. 6: Privacy attack procedure.

all mobile apps used in 10 of those cases, achieving an

83% success rate. Our results confirmed that through the

history attack, an attacker may obtain another user’s private

information, such as their per-location app usage, with high

confidence and without being noticed by the victim.

C. Correlation Attack

As described previously in Section III-D, the attacker may

use the captured LTE traffic patterns that he collected from

different UEs to identify relationships between users (i.e.,

correlation attack). Figure 6 shows three consecutive steps in

our correlation attack. (1) Radio Scanning scans the broadcast

channel to identify the victim’s radio information, (2) App
Detection uses a hierarchical classification method based on

Random Forest, and (3) Similarity Calculation uses the

Dynamic Time Warping (DTW) algorithm as a distance metric

to compare recorded traces [42].

To use DTW in our analysis, we generated 10 VoIP and

instant messaging traffic traces for each pair of metadata to

measure the similarity in both lab and real-world settings,

where Tw being the time threshold to be considered in the

calculation as a unit of traffic, and Ta as the number of frames

in a time window. By default, we set Tw to 1 second. After

creating a cost matrix, DTW compares the two-time series data

using Euclidean distance, represented as d(D(Tw, Ta)), and

finds the similarity value D(Tw, Ta) using the Equation (1):

D(Tw, Ta) = d(Tw, Ta) +min

⎧⎨
⎩
D(Tw − 1, Ta − 1),
D(Tw − 1, Ta),
D(Tw, Ta − 1)

⎫⎬
⎭ (1)

Table VI summarizes similarity scores (i.e., D(Tw, Ta)) for

predicting users’ relationships in both the laboratory setting

and the real-world setting. Under each set, we run the exper-

iment 10 times for each mobile app. We see that our attacks

were largely successful with similarity scores ranging from

0.61 to 0.93. The results show that traffic traces can be used

to reliably detect contact between users.
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Fig. 7: Structuring adversary cost.

After comparing similarity scores between different mobile

apps, we found that apps generating lower volumes of traffic

usually had low similarity scores. To achieve better correlation

attack results, we must collect a sufficient amount of traffic,

which may take longer for apps that generate less traffic.

We also tried adjusting the time window to measure the

effect of smaller samples on the classification. We found that

when the time window shrinks, the similarity score increases

until the time window reaches a certain threshold. Hence, we

can determine the optimal value for the time window for each

app. When we get an optimal time window value, we set it

as the new default value for optimizing the DTW calculation.

This way we iterate through a sequence of optimal values for

the time window and improve the similarity measurement.

However, the similarity of traffic traces alone does not

guarantee the correlation between the two users; It only shows

the similarity of two independent traffic traces. In other words,

it does not prove that the two users are communicating using

the same mobile application. In addition to matching the two

traffic traces using DTW, we leveraged logistic regression [43]

and determined whether the matched traffic traces belong to

traces of certain applications.

Table VII shows the precision and recall values of our

logistic regression model in the lab and real-world settings.

We collected the similarity values from both our lab and real-

world environments. We collected data from each app in our

controlled network environment using our own eNodeB. For

the real-world data, we collected data from commercial mobile

network companies including AT&T, T-Mobile, and Verizon.

Facebook Call and Skype results under the lab setting show

a 100% precision, which means that the model exhibits 100%

true positive and 0% false positive rates. Despite the high true

positive rates, other values, especially the recall values, are

lower than 70%, implying that the model fails to classify many

instances of contact between users. While we expect that the

overall accuracy of the model would increase if trained on a

larger dataset of similarity, we stress that, given high precision,

an attacker just “needs to get lucky once” in detecting a

connection between users over time.

D. Analytical Attacker Cost Model

Based on Figure 7, we build the analytical cost model of

an attacker to sustain an attack performance and describe the

scenarios in a holistic investigation. We will skip 1© , 2© , 7©
, 8© , 9© , and 11© as common costs, while we will break down

the fingerprinting attack cost for each task.

Collecting cost 3©: In real-world considerations, we discussed

in Section VIII, the attacker may want to train the dataset with

reference to the time and size of the multiple and background

traffic. If we indicate the number of training apps by At, and

assume that apps have Av versions that are different enough

to diminish the classifier’s performance, the number of apps

the attacker needs to record is An = At × Av × Ai, where

Ai is the number of instances per app. We indicate the data

recording cost as Colcost(An).

Training Cost 5©: The training cost is to train the classifier

with the collected data, which includes the cost of measuring

features Fm and training a classifier Tc. Hence the cost of

training is Traincost(An, Fm, Tc). If Ts indicates the cost of

training with a single instance of a traffic trace, then the cost

of training the system could be Traincost(An, Fm, TC) =
An × Ts.

App identification cost 4©, 6©: For identifying the app,

the attacker should record test data Td, measure features

Fm, and classify using the classifier Tc. Let Vn indicate

the number of targeted victims and Aa indicate the average

number of apps run by each victim. Then the amount of

test data is Td = Vn × Aa. The total testing cost could be

Colcost(Td) + Idcost(Td, Fm, Tc).

Retraining Cost 10©: To keep the performance of the classifier,

the attacker should retrain the classifier over time. If the

attacker would keep the performance of the classifier above

a threshold X , the retraining costs contain the cost of training

the data (An), measuring the features Fm and training the

classifier (Tc), which is denoted as Retraincost(An, Fm, Tc).
If on average, apps change D day periods, the daily updating

cost is Retraincost(An, Fm, Tc) /D. In order to reflect the

daily change in the traffic patterns of mobile apps, the attacker

trains the classifier daily for up to D days. Then, the overall

cost of an attacker to keep an attack performance:

Perf(An, Fm, Tc, Td) = Colcost(An)

+ Traincost(An, Fm, Tc)

+Colcost(Td) + Idcost(Td, Fm, Tc)

(2)

If the performance falls down under the threshold X in D
days and the attacker should retrain the dataset as described

in Equation 3.

(3)

Cost(An, Fm, Tc, Td)

= Perf(An, Fm, Tc, Td){
+
∑D

1 (Retraincost /D), if Perf() < X
+0, otherwise

For example, in Figure 8, the performance degrades by less

than 70% in seven days, so the attacker needs to retrain the

classifier at this point to maintain the performance. Retraining

the model for D days for keeping the performance could be

expensive for the attackers depending on his aiming.
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Fig. 8: Decrease in performance over time.

VIII. DISCUSSION

A. Real-world Considerations and Limitations

Time effect: Mobile apps are constantly updating critical fixes

or feature improvements. This is reflected in the traffic traces

and accordingly in the performance of the attacks. The critical

effect of time in the performance represents a challenge to the

adversary who should train the classifier on a regular basis.

Depending on the performance that an attacker aims to keep,

the cost of training may be different and we evaluate this cost

in Section VII-D. To measure the effect of time, we run the

experiment by training a classifier with traces of the mobile

apps recorded at the time (day) t = 1 for 10 minutes and

test it using traces recorded within 20 days of the mobile

apps. Figure 8 shows the result of the experiment with the

F-Score measured for the classifier for streaming mobile apps

(T-mobile, YouTube) over the same apps on different days.

For the rest of the mobile apps, we observed similar drops in

performance.

Impacts of noise traffic: It is highly probable that the UE

operates numerous other apps simultaneously in real-world

usage. Thus we consider this case as noise traffic and attempt

to measure the impact of this noise traffic by increasing

the number of running apps. We evaluate the impact on

the performance when trained on a single running app and

tested on traces recorded under multiple apps and background

apps. In order to simulate this environment, we run a single

app (YouTube on T-Mobile) while running the apps in the

background sequentially. We run the 5 to 10 apps in the

background with a delay of 3-4 seconds which were chosen

randomly from the Google store’s top 10 free apps including

the 9 apps we selected for fingerprinting. In this way, we

created datasets of 5 different sizes (10, 20, 30, 40, and 50

K instances) which are used for comparing with the trained

classifier. Then we train the classifier using a single app trace

for 10 minutes and test it with the multiple apps’ traces we

recorded. As shown in Figure 9, we observe a drop in the F-

Score while we increase the size of the dataset by running

multiple background apps. When we increase the amount

of background traffic by 10 K instances, there is a drop in

performance with the range of 3% to 13%, and when the

effective performance is assumed to be 0.6, if the instance

increases more than 30K instances, it may be impossible to

identify. Accordingly, our proposed attack reveals a limitation

Fig. 9: Impact of noise traffic.

where the presence of noise may impede the effectiveness of

the attack results. In another scenario where multiple UEs

are concurrently using the same apps within the same cell

coverage area, there is a possibility that it could result in

higher levels of noise traffic at the radio layers. However,

the traffic we collect and train is exclusively obtained from

a single targeted UE, which is filtered through RNTI-based

techniques. Consequently, our attacks are not influenced by the

interference resulting from multiple UEs executing identical

applications concurrently or any increase in the number of

UEs. (see Section III-A Threat Model).

Handover case: In a real-world setting, there may be extra

costs, technical issues, and inconsistencies that may inhibit the

time-demanding traffic sniffing. In the case of the handover

scenario, we already showed the feasibility of the trace in

history attack in Section VII-B based on the assumption of

the threat model leveraging IMSI catcher and identity mapping

attacks. In another scenario, switching off the victim’s smart-

phone may not use an LTE data connection but instead Wi-Fi

or even downgrade to 3G. In other words, the user’s radio

resource usage pattern may not be detected by this attack.

When the attacker tries to create a dataset for the different

radio technologies, our approach should be redesigned with the

corresponding radio interface and customized with a machine-

learning model.

B. Countermeasures

Because our privacy attacks rely on tracking the temporal

ID (RNTI) of the victim, a frequent reassignment of the RNTI

from the base station can disrupt the tracking and collecting of

LTE traffic. Obfuscating approaches of the traffic characteris-

tics at layer two also can be implemented to prevent revealing

similarities [44]. Also, pre-existing works in the anonymity

network approach [45] could be deployed if they are suitable

for use in mobile networks. Although this technique can

mitigate the effectiveness of the traffic fingerprint, generally

obfuscating traffic imposes high-performance overhead on data

transmission, and thus, is difficult to apply in practice. Bae at

al. [9] proposed and implemented to modify eNodeB enforcing

the encryption of the connection procedure to hide the RNTI.

However, the additional messages and performance overhead

remained for adoption in commercials.
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C. Extension to 5G

There are significant changes in the radio layer of the 5th

generation mobile networks (5G) to support various types of

radio applications (e.g., e-health, automotive, public safety,

and smart grids) [46]. To guarantee the quality of the service,

the 5G application requires a dedicated virtual network service.

However, in the case of the end user, even though the radio

technologies are different, the high-level behavior of the ap-

plication is not influenced. Due to the different frequency and

radio channel technologies, we could equip the proper device

to support the radio spectrum to apply our framework. Also,

5G adopts a new protection mechanism, a globally unique

Subscription Permanent Identifier (SUPI) and Subscription

Concealed Identifier (SUCI) [47], to prevent the exposure of

subscriber’s identifier such as IMSI which used to be mapped

to the identity of the subscriber. Therefore, we would need

to study the correlation methodology with SUPI/SUCI for

collecting a specific user’s traffic.

D. Benchmark for Learning Classifiers

We compare the performance against various supervised

learning algorithms to determine the effectiveness of the

classifier and ensure which classifier is effective in our ap-

proach. We identified the optimal hyperparameters for each

algorithm and present only the results obtained using these

selected hyperparameters. A weighted accuracy is used to

measure their performance on the same dataset. We selected

four algorithms, namely Logistic Regression (LR), k-Nearest
Neighbors (kNN), Convolutional Neural Networks (CNN), and

Random Forest (RF), for our evaluation. To create the dataset,

we mixed the apps from each of the three classes (Streaming,

Calling, Messenger), based on real-world deployments. The

results including details on the configuration parameters and

implementation of the benchmark classifiers can be found in

Table VIII. Based on the weighted average of accuracy values,

we can see that the RF model performed the best, with an

accuracy of 0.821. The kNN model performed the second best,

with an accuracy of 0.735. The LR model performed the third

best, with an accuracy of 0.698, and the Convolutional Neural

Network model performed the worst, with an accuracy of

0.677. The main limitation of LR is the assumption of linearity

between the dependent variable and the independent variables.

In our work, the data is rarely linearly separable. However, the

relationship between input and output is nonlinear. We use

the cross-validation to determine optimal k for kNN model.

Thus we perform an iterative process whereby we train and

test the model across a range of k values, from 1 to 10.

For each k value, we calculate the accuracy of the model.

Ultimately, the optimal k value is chosen as 4 based on the

highest accuracy achieved on the test set. kNN revealed that

when applied to large datasets, the prediction stage may exhibit

signs of reduced processing speed. CNN should keep learning

until it comes out with the best set of features to obtain a

satisfying predictive performance. Also, neural networks are

organized in layers made up of interconnected nodes which

contain an activation function that computes the output of the

TABLE VIII: Performance Comparison of Algorithms

Algorithm LR kNN CNN RF

Streaming 0.613 0.752 0.591 0.819

Calling 0.876 0.760 0.717 0.850

Messenger 0.605 0.694 0.706 0.793

Average 0.698 0.735 0.677 0.821

Parameters C = 1 k = 4

Number

of class = 3,

LF= SCE

Number

of tree = 100,

Seed = 1

• LR: C refers to the inverse of the regularization strength

• kNN: k refers to the number of the nearest neighbors
• CNN: LF (Loss Function) sets SCE (Softmax Cross-Entropy)
• RF: Number of trees sets Cross-validation

• Dataset (real-world): Mixed in equal proportions for each class app

– Streaming 265,599 / Calling 109,692 / Messenger 38,333
– Splitting of the dataset: 80% training, 20% testing

network. It is considerably slower and can become impractical

in certain circumstances. In contrast, RF is an ensemble of

decision trees where the leaf node represents either the major

class for classification problems or the average in the case of

regression problems. RF and CNN are different techniques that

learn differently but can be used in similar domains. However,

RF does not require high-performance hardware such as a

GPU and is hence less computationally expensive compared

to Neural Networks. From our experience, CNN requires more

data and training to predict the results. Since our data is

simple tabular data representing the frame size and cumulative

time, we prefer RF over CNN due to its efficiency in training

and resource consumption. Therefore, we believe the results

obtained with the RF classifier are comparable with its more

accurate counterpart.

IX. CONCLUSION

The air interface of the LTE is easily overlooked by the op-

erators and attackers regarding privacy leakage. Also, there has

been little research regarding applied attacks based on finger-

prints using physical side-channel. In this work, we introduce

the physical channel fingerprinting method by decoding the

LTE traffic captured from the air interface. With the collected

dataset from the lab and real-world settings, we built the

hierarchical classification model by leveraging sophisticated

machine learning techniques. To evaluate the performance

and assure its applicability, we designed and implemented

the targeted privacy attack framework to perform the History

and Correlation attacks in both lab and real-world settings

The evaluation result reveals the sufficient performance of the

model and attack framework. Moreover, our attack framework

is implemented with open-source and affordable cost SDR

devices to be practically adapted to anyone.
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